Qualità degli oli EVO

Webinar del 24/05/2021

Dott. Agronomo Ercole Aloe

Capo Panel CCIAA del Sud-Est Sicilia

La classificazione

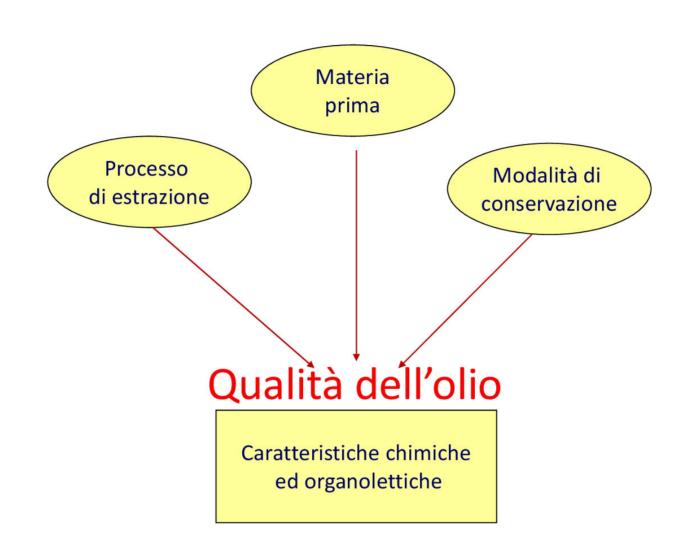
Gli antichi Romani conoscevano bene l'importanza della qualità della materia prima ai fini dell'ottenimento di un buon olio.

Plinio (79 d.C.) classificava l'olio di oliva in cinque qualità:

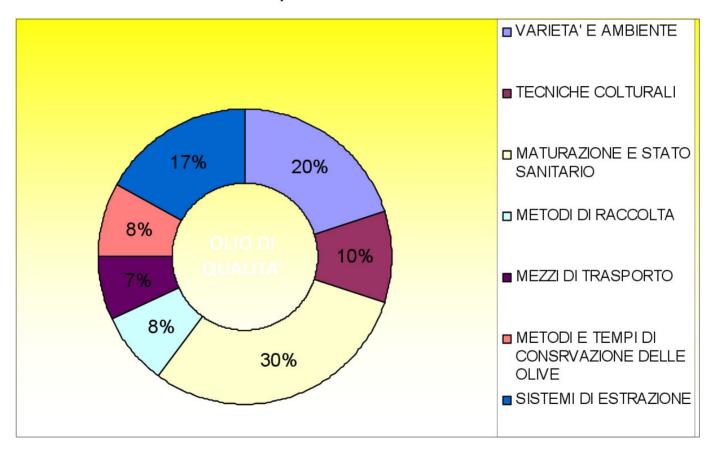
- Oleum ex albis ulivis proveniente dalla spremitura delle olive verdi,
- Oleum viride proveniente da olive raccolte a uno stadio poco avanzato di maturazione,
- Oleum maturum proveniente da olive mature,
- Oleum caducum proveniente da olive raccolte a terra
- Oleum cibarium proveniente da olive bacate, che era destinato all'alimentazione degli schiavi.

Stili percepiti dal consumatore -

- 1° Colore
- 2° Torbidità


Stili percepiti dal consumatore -

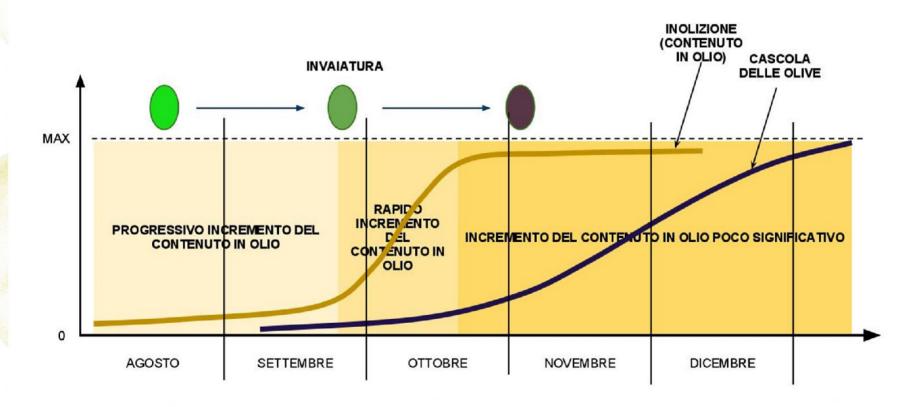
•Gusto, ma sul pane


- Odore dell'olio
- Sapore dell'olio

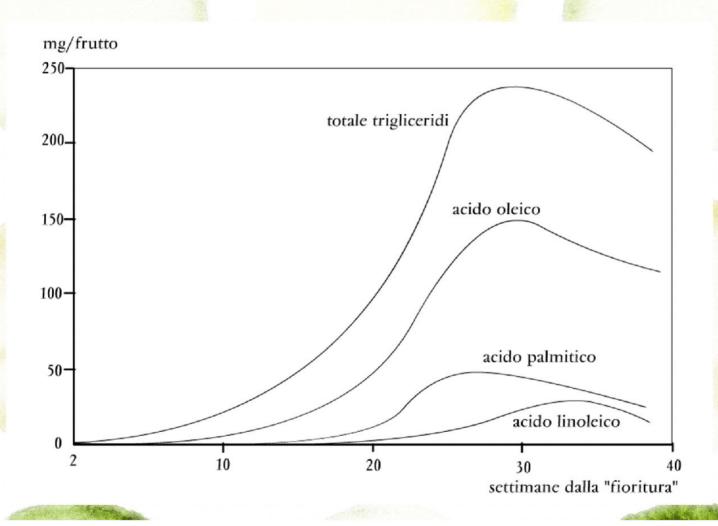
In un olio extravergine di oliva la

- > Qualità è funzione:
 - ✓ materia prima (variabilità genetica e ambientale);
 - ✓ pratica olearia;
 - √freschezza del prodotto;
 - ✓ corretta modalità di conservazione.
- >Genuinità è legata all'assenza di:
 - ✓ oli raffinati sia di oliva che di semi;
 - ✓altri grassi vegetali o animali.

Fattori che influenzano la qualità dell'olio


Fattori di qualità

- Fattori permanenti o non modificabili
 - Clima
 - Microclima
 - Terreno
 - Varietà
- Fattori modificabili
 - Cure colturali
 - Epoca di raccolta
 - Modalità di raccolta
 - Conservazione delle olive



EPOCA DI RACCOLTA

FASI FENOLOGICHE DELLA MATURAZIONE DELLE OLIVE

EPOCA DI RACCOLTA

INVAIATURA

QUANDO?

Una maturazione delle olive appena iniziata: invaiatura superficiale

EPOCA DI RACCOLTA

Non è consigliabile portare le olive alla fase di maturazione fisiologica

0=epicarpo di colore verde intenso

1=epicarpo di colore verde sbiadito

2=epicarpo verde con tracce di arrossamento nella parte distale del frutto e che coprono un quarto della superficie (inizio dell'invaiatura)

3=epicarpo rossiccio o imbrunito per più di metà della superficie (fine dell'invaiatura)

4=epicarpo nero e polpa chiara

5=epicarpo nero e polpa imbrunita per meno della metà della profondità

6=epicarpo nero e polpa imbrunita per più della metà della profondità ma senza arrivare al nocciolo (endocarpo)

7=epicarpo nero e polpa imbrunita fino all'endocarpo

IM = (Ax0 + Bx1 + Cx2 + Dx3 + Ex4 + Fx5 + Gx6 + Hx7)/100

Modalità di raccolta

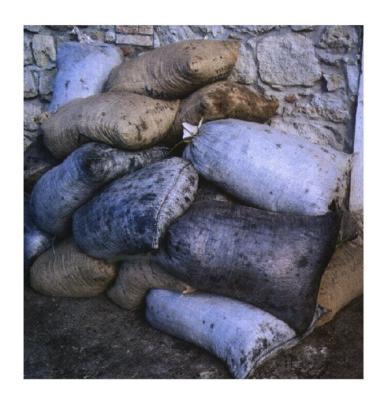
- La raccolta delle olive può avvenire:
- a terra
 - Da scoraggiare per i suoi effetti negativi sulla qualità dell'olio
- direttamente dalla pianta
 - A mano con cesto o brucatura
 - A mano con telo
 - Con pettini e agevolatori meccanici
 - Bacchiatura

Modalità di raccolta

Raccolta manuale

- Con cesto o brucatura
- Con telo

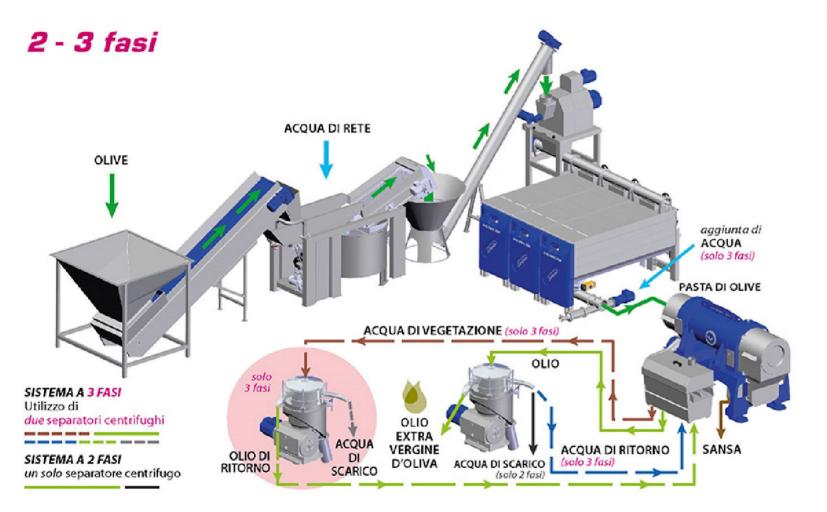
• Le olive vengono raccolte dalla pianta mediante la brucatura


Modalità di raccolta

• In alcune zone della Calabria e in Puglia si è costretti a raccogliere le olive quando cadono a terra

Conservazione delle olive

- In sacchi
 - Di plastica
 - Di iuta



Conservazione delle olive

• In cassette a parete rigida e forata

Trasformazione delle olive

Fasi della trasformazione:

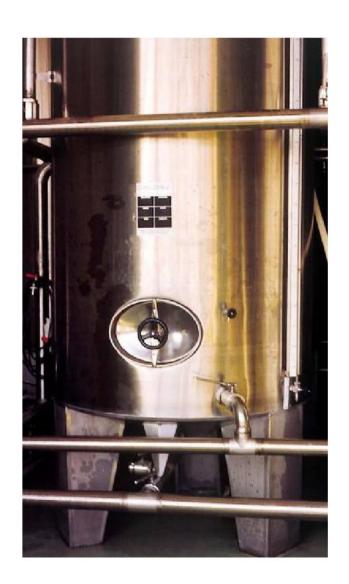
- Mondatura e lavatura
- Frangitura
- Gramolatura
- Estrazione (Solido-Liquido)
- Separazione (Olio AV)
- Decantazione e/o filtrazione
- Conservazione e confezionamento
- TRE FASI
- 30/40 Llitri di acqua/100 Kg
- DUE FASI E MEZZO
- 5/15 litri di acqua/100Kg
- DUE FASI
- Senza acqua

LAVAGGIO

FRANGITURA

GRAMOLAZIONE

ESTRAZIONE


CHIARIFICAZIONE

CONSERVAZIONE

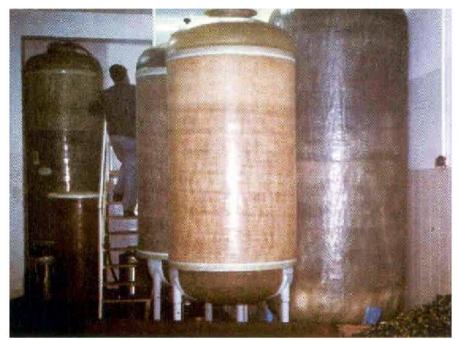
TRAVASI

FILTRAZIONE

IMBOTTIGLIAMENTO

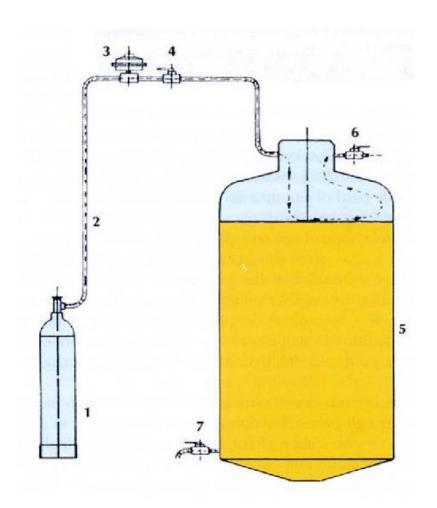
L'intervallo termico a cui si dovrebbe conservare l'olio è compreso tra i 10 e i 24°C; la temperatura ottimale è sui 14-18°C.

OSSIGENO



L'olio di oliva, come quasi tutti i grassi alimentari, è formato per più del 85% da acidi grassi che, a contatto con l'ossigeno atmosferico, tendono a degradarsi tanto che lo rendono immangiabile.

LUCE


Un olio in una bottiglia di vetro trasparente, sottoposto ai raggi solari o ad una luce artificiale subirà rapide alterazioni del proprio colore e del proprio sapore.

Conservazione dell'olio sotto atmosfera inerte (azoto)

LAVAGGIO

FRANGITURA

GRAMOLAZIONE

ESTRAZIONE

CHIARIFICAZIONE

CONSERVAZIONE

TRAVASI

FILTRAZIONE

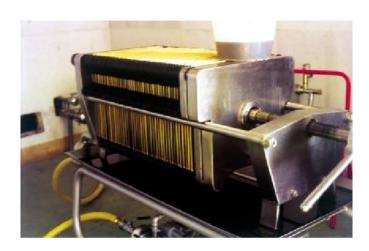
IMBOTTIGLIAMENTO

LAVAGGIO

FRANGITURA

GRAMOLAZIONE

ESTRAZIONE


CHIARIFICAZIONE

CONSERVAZIONE

TRAVASI

FILTRAZIONE

IMBOTTIGLIAMENTO

LAVAGGIO

FRANGITURA

GRAMOLAZIONE

ESTRAZIONE

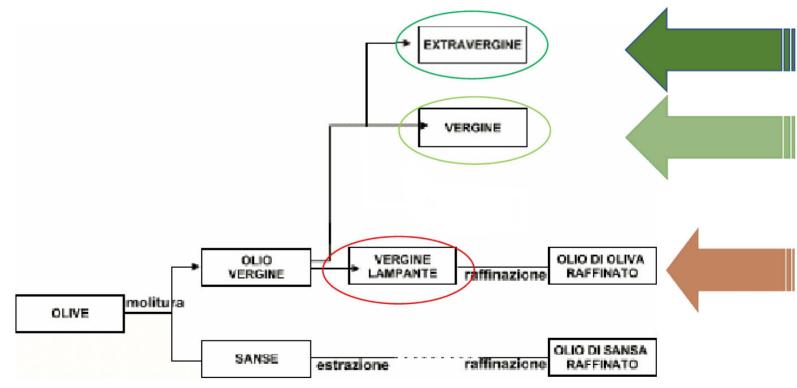
CHIARIFICAZIONE

CONSERVAZIONE

TRAVASI

FILTRAZIONE

IMBOTTIGLIAMENTO



Effetto della luce e del colore del vetro

DALLE OLIVE ALL'OLIO.... di oliva

Commestibili

- Olio extravergine di oliva
 - Olio di oliva vergine con acidità libera espressa in acido oleico inferiore a 0,8 grammi per 100 grammi
- Olio di oliva vergine
 - Olio di oliva vergine con acidità libera espressa in acido oleico al massimo di 2 grammi per 100 grammi

Non commestibili

- Olio di oliva vergine lampante
 - Olio di oliva vergine con acidità libera espressa in acido oleico superiore a 2 grammi per 100 grammi.

Olio di oliva raffinato

 Olio di oliva ottenuto dalla raffinazione di oli di oliva vergini: acidità max 0,5g

Olio di oliva

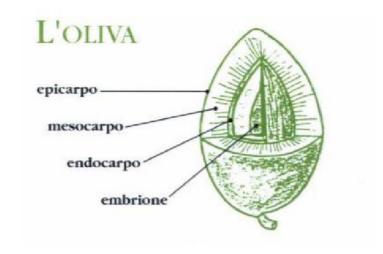
 Olio ottenuto da un taglio di olio di oliva raffinato e di oli di oliva diversi dal lampante: acidità max 1,5g

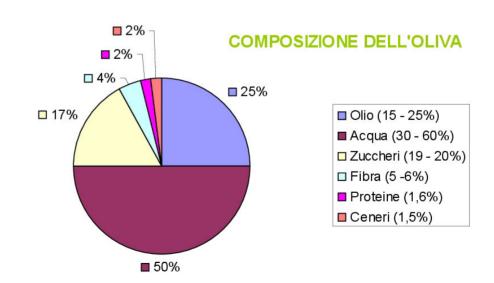
Olio di sansa di oliva greggio

 Olio ottenuto mediante trattamento al solvente di sansa di oliva

Olio di sansa di oliva raffinato

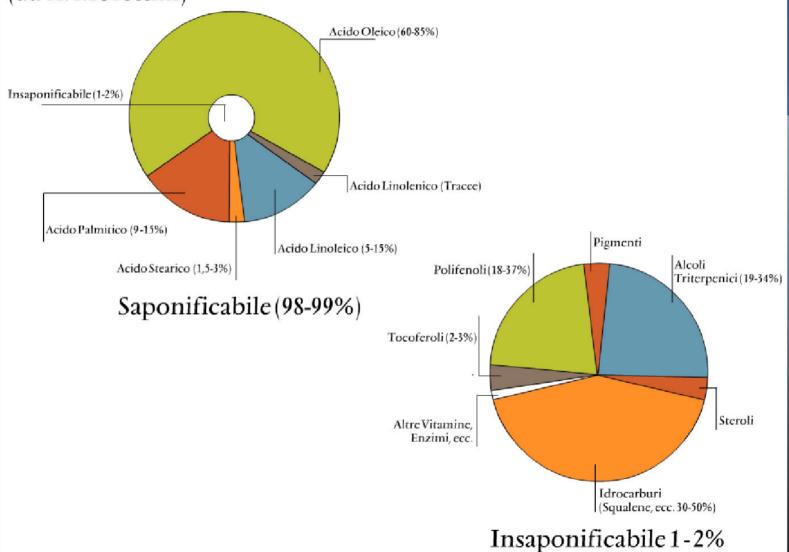
 Olio ottenuto dalla raffinazione di olio di sansa di oliva greggio: acidità max 0,5g


Olio di sansa di oliva


 Olio ottenuto da un taglio d'olio di sansa di oliva raffinato e di oli di oliva vergini diversi dal lampante: acidità max 1,5g

COSTITUZIONE CHIMICA

Gli oli e i grassi appartengono alla stessa classe di composti chimici

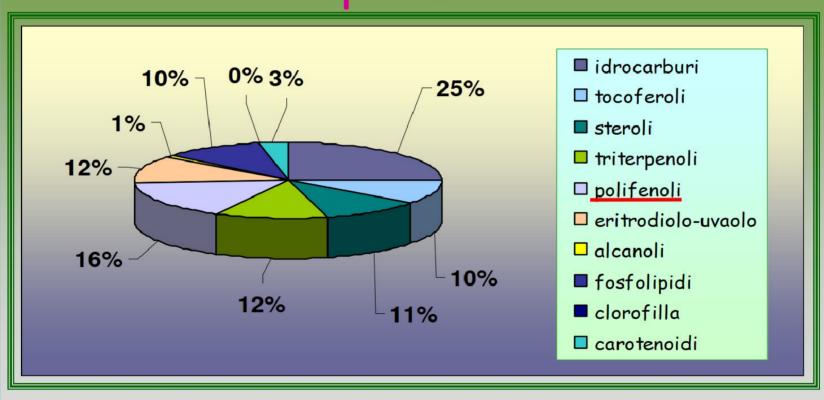

- •90-98% Trigliceridi
- Esteri della glicerina e acidi grassi a lunga catena (C16, C18)
- •0-5% Acidi grassi liberi
- •Costituiscono la vera e propria acidità dell'olio che rispecchia la qualità delle olive (azione della lipasi)
- •0-2% Insaponificabile
- •Una lunga serie di sostanze diverse che differenziano gli oli e ne determinano le caratteristiche organolettiche

Composizione di un olio di oliva

≈ 98-99% Frazione saponificabile (Trigliceridi)

 \mathcal{S} $\approx 1-2\%$ Frazione insaponificabile

Frazione saponificabile e insaponificabile di un olio vergine di oliva (da A. Morettini)



Da un punto di vista organolettico, i trigliceridi risultano:

- * Insapori
- ※ Incolori
- 器 Inodori

Responsabili dell' "<u>untuosità</u>" del prodotto

Le caratteristiche organolettiche di un lipide dipendono dalla frazione insaponificabile

Polifenoli

Acidi fenolici e derivati Alcoli fenolici Lignani Flavoni Antocianidine

Totali 200-300 mg/Kg

tutti i composti fenolici sono potenti antiossidanti, con azione anti-infiammatoria

Attività dei Fenoli

- · effetto anti-carcinogenico
- effetto anti-aterogenico
- · effetto anti-infiammatorio
- attività anti-batterica e anti-virale
- effetto anti-ossidante

G. Mazza, Functional Foods, 1998

N.B. effetto protettivo esercitato dai lignani nei confronti del cancro del seno e del colon (L.U. Thompson, AOCS Press, 1995).

 Polifenoli (glucosidi od esteri - ~ 150 ppm) diminuiscono in olive con epicarpo danneggiato (mosca o lacerazioni) poiché si attivano le polifenolossidasi La concentrazione dell'elevato numero dei <u>componenti aromatici</u> tende a diminuire con il procedere della maturazione

Varieta	n	Polifenoli	mg/kg
ASCOLANA TENERA	121	492	de
BIANCHERA	37	687	ab
BIANCOLILLA	45	345	g
BOSANA	237	471	ef
CASALIVA	91	517	cde
CORATINA	248	792	а
CORONCINA	54	577	bcd
DRITTA	65	598	bc
FRANTOIO	228	596	bc
ITRANA	174	362	g
LECCINO	188	469	ef
MIGNOLA	87	607	bc
MORAIOLO	165	587	bc
NOCELLARA DEL BELICE	98	407	fg
PERANZANA	132	474	ef
PIANTONE DI MOGLIANO	92	464	ef
RAGGIA	114	581	bc
RAVECE	151	483	def
TONDA IBLEA	56	392	fg

Elaborazioni statistiche Massimiliano Magli – IBE CNR Bologna, dati Rassegna Nazionale Oli monovarietal

Gli enzimi di interesse tecnologico presenti nell'oliva

🔭 lipasi

glucosidasi

ossidoriduttasi

lipossigenasi

perossidasi

polifenolossidasi

Classificazione merceologica degli olii

Categoria	Acidità	Perossidi	K232	K270	Panel test	Panel test
Olio extra vergine di oliva	< 0,8	< 20	< 2,50	< 0,20	> 6,5	F > 0 D = 0
Olio vergine di oliva	< 2	<20	< 2,50	< 0,25	> 5,5	F = 0 D < 3,5
Olio vergine lampante	> 2	>20	> 2,50	> 0,25	< 3,5	F = 0 D > 3,5

Olio di oliva vergine

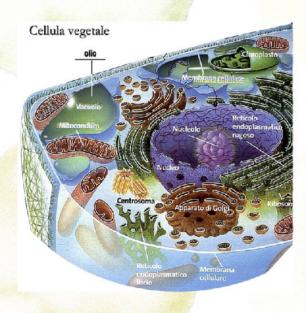
• Acidità Acidi grassi liberi (non esterificati)

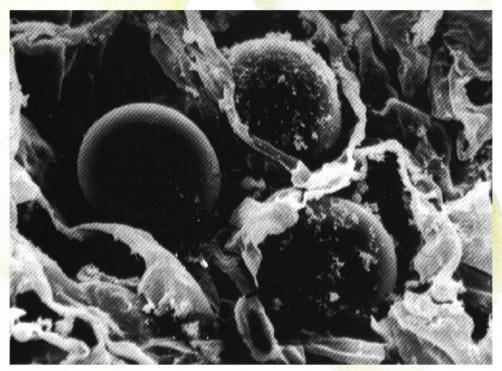
 Perossidi Stato di ossidazione dell'olio per azione dell'ossigeno e dell'enzima lipossidasi.

K ₂₃₂ Assorbimento raggi ultravioletti lunghezza 232 indica
 modificazioni nella posizione dei doppi legami degli acidi polinsaturi attribuibile a
 raffinazione

 K ₂₇₀ Assorbimento raggi ultravioletti lunghezza 270 indica modificazioni nella posizione dei tripli legami degli acidi polinsaturi attribuibile a raffinazione

Panel Test Valutazione Organolettica


ACIDITA'


L'azione della lipasi si esercita secondo il seguente schema:

L'attività dell'enzima lipasi è favorita da:

•Temperatura
$$> (30 - 40^{\circ}C), < (0^{\circ}C);$$

L'OLIO NELLA CELLULA

NUMERO DI PEROSSIDI

Misura lo stato di ossidazione degli acidi grassi che costituiscono i trigliceridi, che a contatto con l'ossigeno dell'aria e per azione della lipossidasi (naturalmente presenti nelle olive)

Questo valore dipende da una serie di fenomeni che avvengono in 2 diversi momenti della vita di un olio:

- Coltivazione, raccolta, stoccaggio e lavorazione delle olive
- Conservazione

REGOLE PER LA QUALITA'

PRECAUZIONI IN CAMPO:

- ·sanità delle olive
- ·raccolta a mano
- •al più presto in frantoio

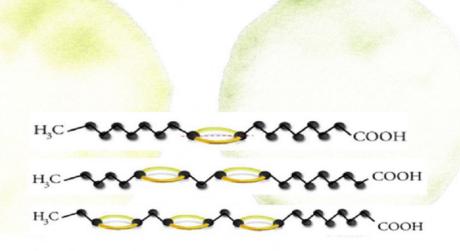
PRECAUZIONI PER LA CONSERVAZIONE DELL'OLIO:

- assenza di luce;
- •temperatura controllata 12 15°C
- evitare il contatto con l'aria (serbatoi pieni)

Come possiamo informare I consumatori sulle proprietà biologiche dell'OEVO ??

Parametri di qualità

Chimici ed organolettici


Indicazioni del claims (Reg. CE 432/2012)

La sostituzione nella dieta dei grassi saturi con grassi insaturi contribuisce al mantenimento di livelli normali di colesterolo nel sangue

Area geografica di origine

DOP - IGP

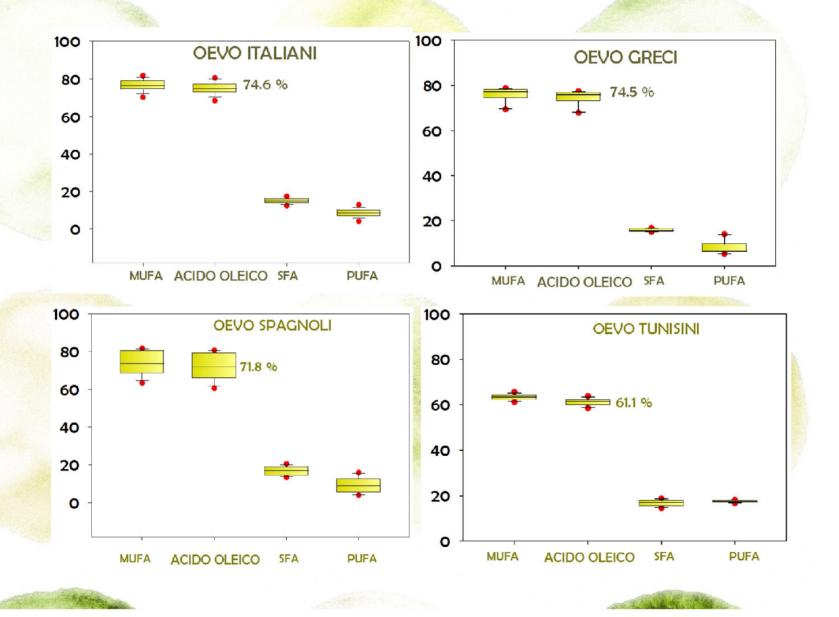
	200000
MYRISTICO (C14:0)	
	(%)
	0.0 - 0.1
PALMITICO (C16:0)	7.0 - 20.0
PALMITOLEICO (C16:1)	0.3 - 3.5
EPTADECANOIOCO (C17:0)	0.0 - 0.4
EPTADECENOICO (C17:1)	0.0 - 0.4
STEARICO (C18:0)	1.0 - 4.0
OLEICO (C18:1 Ω-9)	47.0 - 84.0
LINOLEICO (C18:2 Ω-6)	3.0 - 21.0
LINOLENICO (C18:3 Ω-3)	0.2 - 1.5
ARACHIDICO (C20:0)	0.1 - 0.7
11-EICOSENOICO (C20:1)	0.1 - 0.1
BEHENICO (C22:0)	0.0 - 0.3
LIGNOCERICO (C24:0)	0.0 – 0.4

Elevato contento di acidi grassi monoinsaturi.

Rapporto ottimale tra ac. oleico / ac. linoleico (7-11).

Rapporto ottimale tra ω 6: ω 3 (10:1).

Ambiente di coltivazione


Latitudine e temperature

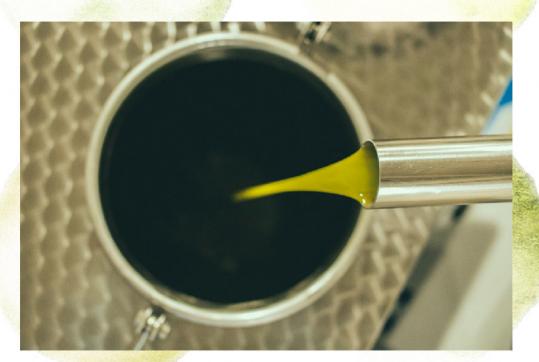
Oli del Sud Italia meno ricchi in acido oleico, più ricchi in palmitico e linoleico.

Varieta	n	Ac. Linoleico	%	Ac. Oleico	%	Ac. Palmitico	%
ASCOLANA TENERA	121	6,7	gh	74,2	de	14,0	bc
BIANCHERA	37 <	5,9) i	76,3	abc	12,6	е
BIANCOLILLA	45	9,3	bcd	71,7	hi	13,8	bcd
BOSANA	237	10,3	а	71,9	h	13,2	d
CASALIVA	91	6,6	hi	76,8	ab	12,5	е
CORATINA	248	6,9	fgh<	77,4	>a	11,4	f
CORONCINA	54	8,5	de	73,5	ef	13,4	d
DRITTA	65	8,2	е	72,9	fg	13,7	bcd
FRANTOIO	228	7,1	fg	75,5	с	13,1	d
ITRANA	174	6,5	hi	76,8	ab	12,4	е
LECCINO	188	6,6	hi	74,7	d	14,2	Ь
MIGNOLA	87	9,0	cd	71,2	hi	14,9	а
MORAIOLO	165	7,3	f	75,1	cd	13,5	d
NOCELLARA DEL BELICE	98	8,2	е	73,0	f	13,3	d
PERANZANA	132	9,7	Ь	71,9	gh	13,7	cd
PIANTONE DI MOGLIANO	92	6,8	fgh	76,1	bc	12,4	е
RAGGIA	114	7,4	f	74,7	d	13,3	d
RAVECE	151	9,4	bc	72,8	fg	12,7	е
TONDA IBLEA	56	9,1	bcd	70,5	>1	15,2	а

Elaborazioni statistiche Massimiliano Magli – IBE CNR Bologna, dati Rassegna Nazionale Oli monovarietali

Descrizione del prodotto

Parametri chimici	Valore UE 2015/1830	Dop Monti Iblei
Acidità (%)	≤ 0,8	≤ 0,5
Perossidi (meqO2/Kg)	≤ 20	≤ 12
K232	≤ 2,5	≤ 2,5
K270	≤ 0,22	≤ 0,22
Delta K	≤ 0,01	≤ 0,01
Polifenoli	NP	≥ 120 mg



Descrizione del prodotto

Parametri orgnolettici	Valore UE 2015/183 0	Dop Monti Iblei
Mediana Fruttato	> 0	 Fruttato di oliva maturo > 2, ≤ 6; Fruttato di oliva verde > 2, ≤ 8; Erba e/o Pomodoro e/o carciofo > 2, ≤ 8; Amaro > 2, ≤ 6; Piccante > 2, ≤ 8;
Mediana difetto	= 0	= 0

PRINCIPI DI ANALISI SENSORIALE

L'analisi sensoriale sfrutta la capacità degli organi di senso di reagire a stimoli di origine chimica, chimicofisica e fisica;

ASSAGGIO DI OLI – PANEL TEST

- Gli obiettivi dell'ASSAGGIO :
 - Classificazione merceologica
 - Definizione della tipicità
 - Strategie di marketing
 - Controllo processo produttivo
 - Valutazione della shelf-life
 - ALLE COMMISSIONI CCIAA IRVOS
 - CERTIFICARE L'IDONEITA' DEGLI OLI A DOP/IGP
 - ALLE GIURIE DEI CONCORSI
 - VALUTARE ED ASSEGNARE DEI PUNTEGGI DI MERITO

- Reg CE 2568/91 allegato XII
- Recepisce in maniera integrale il metodo messo a punto dal COI
- Stabilisce in maniera puntuale:
 - Caratterizzazione merceologica dell'olio di oliva
 - · Metodiche analitiche
 - Analisi sensoriale

Il vocabolario dell'olio di oliva

Attributi negativi

Attributi positivi

Altri Attributi negativi

Riscaldo

Fruttato

Cotto o stracotto

Muffa-umidità

Amaro

Fieno-legno

Morchia

Piccante

Grossolano

Avvinato -Inacetito

Lubrificanti

Metallico

Acqua di vegetazione

Rancido

Salamoia

Sparto

Terra

Verme

Cetriolo

Varietà	n	Fruttato Amaro		0	Piccante		
ASCOLANA TENERA	121	5,7	ь	4,8	cd	5,0	bc
BIANCHERA	37	5,2	efgh	5,4	ab	5,2	ab
BIANCOLILLA	45	5,4	cdef	4,1	е	4,5	de
BOSANA	237	5,2	efg	4,7	cd	4,7	cde
CASALIVA	91	5,4	cde	4,7	cd	4,8	bcd
CORATINA	248	5,5	cd <	5,6	а	5,4	а
CORONCINA	54	5,2	defg	4,9	bcd	5,0	bc
DRITTA	65	4,9	gh	4,6	cde	4,7	cde
FRANTOIO	228	5,3	def	4,9	bcd	4,9	bc
ITRANA	174	5,8	Ь	4,3	е	4,4	е
LECCINO	188	4,9	gh	4,5	de	4,6	de
MIGNOLA	87	4,9	gh	5,1	bc	4,8	bcd
MORAIOLO	165	5,2	def	5,1	bc	4,9	bc
NOCELLARA DEL BELICE	98	5,5	bcd	4,2	е	4,6	cde
PERANZANA	132	5,2	efgh	4,4	de	4,5	de
PIANTONE DI MOGLIANO	92	4,8	h	4,2	е	4,6	cde
RAGGIA	114	5,0	fgh	4,6	de	4,8	bcd
RAVECE	151	5,6	bc	4,7	cd	4,9	bc
TONDA IBLEA	56	6,2	а	4,4	de	4,8	bcde

Elaborazioni statistiche Massimiliano Magli – IBE CNR Bologna, dati Rassegna Nazionale Oli monovarietali

Varietà	n	Erba	Mandorla	Carciofo	Pomodoro	Frutti di bosco	Erbe aromat iche
ASCOLANA			ASSESS OF THE PARTY OF THE PART				
TENERA	121	3,0 abc	1,4 h	2,0 abc	2,8 ab	0,0	0,2
BIANCHERA	37	2,3 cd	2,3 def	1,9 abcd	0,9 de	0,0	0,1
BIANCOLILLA	45	3,0 abc	1,9 fg	1,9 abcd	1,2 d	0,0	0,1
BOSANA	237	2,6 c	2,0 f	2,3 a	0,6 e	0,0	0,1
CASALIVA	91	2,7 c	3,5 a	1,9 bcd	0,1 f	0,0	0,2
CORATINA	248	2,7 c	3,1 ab	2,2 ab	0,2 f	0,0	0,1
CORONCINA	54	2,5 cd	2,5 def	2,1 abc	0,3 ef	0,0	0,2
DRITTA	65	2,0 de	2,8 bcd	1,7 cde	0,1 f	0,0	0,1
FRANTOIO	228	2,5 c	3,1 ab	1,9 bcd	0,2 f	0,0	0,1
ITRANA	174	3,1 ab	1,4 gh	2,4 a	2,3 c	0,1	0,3
LECCINO	188	2,0 de	2,7 cd	1,5 de	0,1 f	0,0	0,1
MIGNOLA	87	1,6 e	1,6 gh	1,1 e	0,1 f	1,4	0,2
MORAIOLO	165	2,5 c	2,6 de	2,1 abc	0,3 ef	0,0	0,1
NOCELLARA DEL BELICE	98	2,8 abc	1,4 gh	2,0 abc	2,2 c	0,0	0,1
PERANZANA	132	2,6 c	2,2 ef	2,4 a	0,8 de	0,0	0,1
PIANTONE DI						-3-	
MOGLIANO	92	1,9 de	2,3 def	1,4 de	0,4 ef	0,0	0,1
RAGGIA	114	2,1 d	3,0 abc	1,7 cde	0,1 f	0,0	0,1
RAVECE	151	2,8 bc	1,4 h	2,1 abc	2,5 bc	0,0	0,1
TONDA IBLEA	56	3,3 a	1,0 h	2,6 a	3,1 a	0,0	0,1

Elaborazioni statistiche Massimiliano Magli – IBE CNR Bologna, dati Rassegna Nazionale Oli monovarietali

Mentre alcuni parametri chimici, in particolare acidi grassi e polifenoli, si modificano con l'ambiente di coltivazione, la componente aromatica marca in maniera importante le varietà "soliste", indipendentemente dalle variabili produttive, consentendo di identificarne la varietà, e l'influenza del terroir sull'espressione aromatica dell'olio è leggermente depotenziata.

Possono essere definiti "orchestrali" invece gli oli con debole intensità olfattiva, in cui non essendoci solisti, alla melodia contribuisce l'intera orchestra.

■500 ml = € 20,00

 «Olive nere» di Panisse è prodotto secondo una ricetta tradizionale Provenzale; una fermentazione controllata delle olive permette di ottenere un olio dolce ed un qusto simile a quello delle olive nere. Al naso il profumo è molto caratteristico con aromi intensi di cacao, di funghi e di tartufo. In cucina va bene con verdure, funghi, carne, gamberi, fomaggio di capra e accanto ad un dessert come mele cotogne e pere cotte.

FALSI MITI SULL'OLIO D'OLIVA

ABBINAMENTO OLIO-CIBO	78%
UTILIZZO SEMPRE DELLO STESSO TIPO DI OLIO	82%
OLIO AMARO = CATTIVA QUALITA'	76%
OLIO NON FA BENE PERCHE' E' GRASSO	65%
CLASSIFICAZIONE OLIO	78%
FATTORE LUCE E CALORE	48%

di recente ho avuto l'opportunità di aprire un olio evo del 2001, rimasto nascosto nella mia cantina.

Naturalmente ero piuttosto scettico nel provarlo. Ma la mia grande sorpresa è stata scoprire che 17 anni dopo aveva ancora un profumo incredibilmente aromatico ed un sapore unico.

from the fields of Puglia and Calabria to the lowlands of Campania and Lazio, and the beautiful Tuscan countryside, EVOO expresses itself in different ways, reflecting the land, the culture, and the people. In short, the best of ourselves.

We often hear that extra virgin olive oil should follow the path created by the wine industry. In that regard, I would like to finish these lines with an anecdote. Although it is well-know that an extra virgin should preferably be consumed by the harvest following the one from which it was made, I recently had the opportunity of opening a 2001 EVOO that remained hidden in my cellar. I was, of course, rather skeptical about trying it. But my great surprise was to find that 17 years later it still maintained an incredibly aromatic nose and a unique flavor. And that goes to show that, indeed, extra virgin olive oil is eternal.

Carlo Cracco, Chef at Cracco (Milan, Italy). MasterChef Italy Jury Member. Hell's Kitchen Italy Host.

